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High-speed signaling over package substrates is key to delivering the promise of
2.5D integration. Applications abound and include high-density memory
interfaces, sub-division of large dies to increase yield and lower development
time, sub-division of a die to achieve upward or downward scalability, or
connecting to an off-chip SerDes or optics engine. Each of these in-package
applications typically has high throughput and onerously low power constraints
along with a low-loss channel. Several solutions have been proposed. Interposer
substrates [1], or Chip-on-Substrate-on-Wafer [2] allow for very high-density
wiring and low power using CMOS transceivers. Their high manufacturing and
testing cost makes them prohibitive for anything but high-end applications. A
different approach using high-speed ground-referenced single-ended signaling is
reported in [3], which is intended for shorter channels up to 4.5mm and a BER of
1e-12. An approach using differential signaling on up to 0.75” of Megtron 6
material and a BER of 1e-9 is reported in [4]. A comparison is given in Fig. 10.1.1.

Our approach generalizes differential signaling. Correlated quaternary values are
transmitted on a 6-wire bus with a forwarded clock (FCLK) SerDes, which achieves
high bandwidth, coupled with low power. The set of transmitted values belongs
to a code consisting of 32 codewords called the CNRZ-5-code. 5b are transmitted
on the 6 wires in every Ul. The codebook consists of judiciously chosen
permutations of [+1, +1/3, +1/3, -1/3, -1/3, -1]. At the receiver, the codewords
are detected by the 5 self-referencing comparators shown in Fig. 10.1.2. The
specific choice of the codewords eliminates transmit common-mode and
simultaneous switching output noise. The CNRZ-5 codebook and its comparators
have been designed to optimize the ISI-Ratio [5], a figure of merit that measures
the susceptibility of a signaling code to inter-symbol Interference (ISI). The
smallest possible ISI-ratio is 1 and is achieved by both the differential NRZ and
the 6-wire CNRZ-5 codes by design. Traditional quaternary signaling codes like
differential PAM-4 have an ISl-ratio of 3, making them inherently much more
susceptible to ISI-noise.

The CNRZ-5 SerDes in 28nm CMOS comprises a transmitter, Tx, a receiver, Rx,
and a common block, CB. The transmitter consists of 6 data and 2 clock wires
transmitting a differential FCLK at a quarter rate, Fig. 10.1.3. The 6 wires of the
output driver are terminated to a common point, V., with a nominal value at
Vya/2. A digital encoder transforms five streams of 32b each of incoming data
(total 160b) into 12 streams of coded signals for the 6 wires. Custom logic is
used to convert 2b of encoded data per wire into 3 control signals for creating
the wire levels in the output driver. A single CNRZ-5 encoder operating at 1.5625
GHz has 23 gates and a maximum logic depth of 2 and is implemented with
standard cells. A sliced architecture source-series-terminated driver is used,
where the output voltage swing, common mode and termination resistors are
programmable. A nominal termination impedance of 75Q is chosen to reduce
power, while maintaining signal integrity with 502 MCM channels together with
series inductors (layers M8-M9). An FCLK architecture provides a simple receiver
clock data alignment (CDA) process, thus reducing power consumption and
system complexity. The differential FCLK has a frequency of 3.125GHz
(baudrate/8) and is rate but not skew matched to the 6 data wires. A local Tx mini-
PLL provides the Tx clocks.

Figure 10.1.4 shows the architecture of the CNRZ-5 receiver. The Rx 6 data wires
and differential FCLK are DC coupled to the line; a level shifter is used to bring
the input CM voltage to an optimum value for the CTLE and samplers. The
receiver is a quadrature-rate architecture scheme with 5 parallel quarter rate
strong-arm samplers (one per sub-channel of the CNRZ-5 code) plus one sampler

dedicated to the FCLK CDA, which is sampling data crossings. The self-
referencing comparators provide immunity to common-mode noise across the 6
input data wires. T-coils (layers M8-M9) are used to compensate the parasitic
input capacitance and achieve the desired input return loss. They are placed under
the bumps to save area. The samplers have wide-range 7b low-speed offset-
correction DACs with a resolution of 2.5mV. They can be used to reconstruct a
receive eye at the output of the CTLE. The 6 Rx data wires and receive signal path
circuitry are closely skew matched. A local Rx mini-PLL generates a local quarter-
rate clock from the received FCLK; the Rx mini-PLL generates four clock phases
(0,90, 180, 270) using a complementary 4-stage fed forward Ring Oscillator (RO),
which also provides an additional 315 degree phase for the CDA algorithm. The
Rx mini-PLL maximizes bandwidth, and minimizes jitter transfer peaking.

A central low phase noise RO-based main-PLL generates a 3.125GHz clock from
common RefClk frequencies. The main-PLL is a three-stage pseudo-differential
RO supplied by a regulator from a 1.5V/1.8V supply. It has a programmable
charge pump/loop filter combination with additional elements for fast start; digital
lock detector and auto-restart circuits are included. The output of the main-PLL
is multiplied by 2 in a Tx mini-PLL for the local four phase 6.25GHz transmitter
clocks; the Tx mini-PLL is a type-Il RO PLL. It rejects supply noise injected
deterministic jitter through its wide bandwidth (250MHz). To properly track the
jitter on the received signal, the Rx mini-PLL has a higher bandwidth (500MHz).
The main-PLL is part of the common-block layout that also provides an analog
test bus and temperature sensors. The Rx and Tx mini-PLLs are part of the Rx
and Tx blocks, respectively, and include lock detectors.

The CNRZ-5 FCLK SerDes link is fabricated in a 28nm 1P9M process. Its layout
is shown in Fig. 10.1.5 and the testchip, with a single instance of the SerDes, is
shown in Fig. 10.1.7. The SerDes size is 1.503x0.4185mm? (Si) and has been laid
out in a modular fashion such that additional 6 wire chords may be added to
multiple chord SerDes utilizing one main-PLL. The testchip achieves 166Gb/s
per mm die-edge (Rx plus Tx). A quad chord SerDes will offer 444Gb/s per mm
(Rx plus Tx) with standard 150pm pitch bump technology. The FCLK SerDes
supports data rates from 12.5 to 25Gbaud, internal Tx to Rx loop-back, PRBS31
and user pattern generation and verification, and a receiver eyescope. The test
setup is a MCM with four testchip dies arranged to support 3 MCM channels of
lengths 5mm, 12mm and 24mm; two of the four die provide Tx and Rx 8-wire
breakouts respectively. Figure 10.1.6 shows a horizontal bathtub plot with an
opening of 20ps at BER=1e-15, and an example of an eye diagram using the on-
die eyescope at 25Gbaud over 12mm of MCM trace with 1.3dB loss; residual
untracked jitter is 500fs (<0.015Ul). Long runs show a vertical eye opening of
65mV at BER<1e-15 at nominal conditions (Vyg,=Vg4=1V, Vyan=1.5V) and a power
efficiency of 1.1pJ/b. The link achieves a power efficiency of 0.94pJ/b at 25Gbaud
with BER<1e-15 on the same channel at V4,=0.925V, V4,=0.8V, and Vy4,=1.4V.
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Figure 10.1.1: Comparison to prior work (SiCa=Silicon carrier, SE = single
ended, D = differential, GRSE=ground referenced single-ended, MCM = MCM  Figure 10.1.2: Functional diagram of the CNRZ-5: encoder, wires, multi-input

organic substrate, Meg 6 = Megtron 6) and power/area hreakdown. comparators.
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Figure 10.1.3: CNRZ-5 transmitter block/circuit diagram. Figure 10.1.4: CNRZ-5 receiver block/circuit diagram.
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Figure 10.1.6: CNRZ-5 horizontal BER bathtub curve and example eye plot at
Figure 10.1.5: CNRZ-5 IP layout (CmIP = Common IP). the Rx for a 12mm MCM channel at 25GBd, PRBS31 pattern.
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Figure 10.1.7: CNRZ-5 testchip.
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